< PreviousExp Neurobiol 2016; 25(1): 1~54Next >
  • Review Article | February 29, 2016

    A Short Review on the Current Understanding of Autism Spectrum Disorders

    Hye Ran Park, Jae Meen Lee, Hyo Eun Moon, Dong Soo Lee, Bung-Nyun Kim, Jinhyun Kim, Dong Gyu Kim and Sun Ha Paek

    Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders characterized by a deficit in social behaviors and nonverbal interactions such as reduced eye contact, facial expression, and body gestures in the first 3 years of life. It is not a single disorder, and it is broadly considered to be a multi-factorial disorder resulting from genetic and non-genetic risk factors and their interaction. Genetic studies of ASD have identified mutations that interfere with typical neurodevelopment in utero through childhood. These complexes of genes have been involved in synaptogenesis and axon motility. Recent developments in neuroimaging studies have provided many important insights into the pathological changes that occur in the brain of patients with ASD in vivo. Especially, the role of amygdala, a major component of the limbic system and the affective loop of the cortico-striatothalamo-cortical circuit, in cognition and ASD has been proved in numerous neuropathological and neuroimaging studies. Besides the amygdala, the nucleus accumbens is also considered as the key structure which is related with the social reward response in ASD. Although educational and behavioral treatments have been the mainstay of the management of ASD, pharmacological and interventional treatments have also shown some benefit in subjects with ASD. Also, there have been reports about few patients who experienced improvement after deep brain stimulation, one of the interventional treatments. The key architecture of ASD development which could be a target for treatment is still an uncharted territory. Further work is needed to broaden the horizons on the understanding of ASD.

  • Original Article | February 29, 2016

    PINK1 Deficiency Decreases Expression Levels of mir-326, mir-330, and mir-3099 during Brain Development and Neural Stem Cell Differentiation

    Insup Choi, Joo Hong Woo, Ilo Jou and Eun-hye Joe

    PTEN-induced putative kinase 1 (PINK1) is a Parkinson's disease (PD) gene. We examined miRNAs regulated by PINK1 during brain development and neural stem cell (NSC) differentiation, and found that lvels of miRNAs related to tumors and inflammation were different between 1-day-old-wild type (WT) and PINK1-knockout (KO) mouse brains. Notably, levels of miR-326, miR-330 and miR-3099, which are related to astroglioma, increased during brain development and NSC differentiation, and were significantly reduced in the absence of PINK1. Interestingly, in the presence of ciliary neurotrophic factor (CNTF), which pushes differentiation of NSCs into astrocytes, miR-326, miR-330, and miR-3099 levels in KO NSCs were also lower than those in WT NSCs. Furthermore, mimics of all three miRNAs increased expression of the astrocytic marker glial fibrillary acidic protein (GFAP) during differentiation of KO NSCs, but inhibitors of these miRNAs decreased GFAP expression in WT NSCs. Moreover, these miRNAs increased the translational efficacy of GFAP through the 3'-UTR of GFAP mRNA. Taken together, these results suggest that PINK1 deficiency reduce expression levels of miR-326, miR-330 and miR-3099, which may regulate GFAP expression during NSC differentiation and brain development.

  • Original Article | February 29, 2016

    Agmatine Ameliorates High Glucose-Induced Neuronal Cell Senescence by Regulating the p21 and p53 Signaling

    Juhyun Song, Byeori Lee, Somang Kang, Yumi Oh, Eosu Kim, Chul-Hoon Kim, Ho-Taek Song and Jong Eun Lee

    Neuronal senescence caused by diabetic neuropathy is considered a common complication of diabetes mellitus. Neuronal senescence leads to the secretion of pro-inflammatory cytokines, the production of reactive oxygen species, and the alteration of cellular homeostasis. Agmatine, which is biosynthesized by arginine decarboxylation, has been reported in previous in vitro to exert a protective effect against various stresses. In present study, agmatine attenuated the cell death and the expression of pro-inflammatory cytokines such as IL-6, TNF-alpha and CCL2 in high glucose in vitro conditions. Moreover, the senescence associated-β-galatosidase's activity in high glucose exposed neuronal cells was reduced by agmatine. Increased p21 and reduced p53 in high glucose conditioned cells were changed by agmatine. Ultimately, agmatine inhibits the neuronal cell senescence through the activation of p53 and the inhibition of p21. Here, we propose that agmatine may ameliorate neuronal cell senescence in hyperglycemia.

  • Original Article | February 29, 2016

    Drosophila Homolog of Human KIF22 at the Autism-Linked 16p11.2 Loci Influences Synaptic Connectivity at Larval Neuromuscular Junctions

    Sang Mee Park, J. Troy Littleton, Hae Ryoun Park and Ji Hye Lee

    Copy number variations at multiple chromosomal loci, including 16p11.2, have recently been implicated in the pathogenesis of autism spectrum disorder (ASD), a neurodevelopmental disease that affects 1~3% of children worldwide. The aim of this study was to investigate the roles of human genes at the 16p11.2 loci in synaptic development using Drosophila larval neuromuscular junctions (NMJ), a well-established model synapse with stereotypic innervation patterns. We conducted a preliminary genetic screen based on RNA interference in combination with the GAL4-UAS system, followed by mutational analyses. Our result indicated that disruption of klp68D, a gene closely related to human KIF22, caused ectopic innervations of axon branches forming type III boutons in muscle 13, along with less frequent re-routing of other axon branches. In addition, mutations in klp64D, of which gene product forms Kinesin-2 complex with KLP68D, led to similar targeting errors of type III axons. Mutant phenotypes were at least partially reproduced by knockdown of each gene via RNA interference. Taken together, our data suggest the roles of Kinesin-2 proteins, including KLP68D and KLP64D, in ensuring proper synaptic wiring.

  • Original Article | February 29, 2016

    Blood Transcriptome Profiling in Myasthenia Gravis Patients to Assess Disease Activity: A Pilot RNA-seq Study

    Kee Hong Park, Junghee Jung, Jung-Hee Lee and Yoon-Ho Hong

    Myasthenia gravis (MG) is an antibody-mediated autoimmune disease characterized by exertional weakness. There is no biomarker to reflect disease activity and guide treatment decision. Here, we reported a pilot blood transcriptome study using RNA sequencing (RNA-seq) that identified differences of 5 samples in active status and 5 in remission from 8 different patients and 2 patients provided samples for both active and remission phase. We found a total of 28 differentially expressed genes (DEGs) possibly related to disease activity (23 up-regulated and 5 down-regulated). The DEGs were enriched for the cell motion and cell migration processes in which included were ICAM1, CCL3, S100P and GAB2. The apoptosis and cell death pathway was also significantly enriched, which includes NFKBIA, ZC3H12A, TNFAIP3, and PPP1R15A. Our result suggests that transcript abundance profiles of the genes involved in cell trafficking and apoptosis may be a molecular signature of the disease activity in MG patients.

  • Original Article | February 29, 2016

    Differential Cellular Tropism of Lentivirus and Adeno-Associated Virus in the Brain of Cynomolgus Monkey

    Heeyoung An, Doo-Wan Cho, Seung Eun Lee, Young-Su Yang,Su-Cheol Han and C. Justin Lee

    Many researchers are using viruses to deliver genes of interest into the brains of laboratory animals. However, certain target brain cells are not easily infected by viruses. Moreover, the differential tropism of different viruses in monkey brain is not well established. We investigated the cellular tropism of lentivirus and adeno-associated virus (AAV) toward neuron and glia in the brain of cynomolgus monkeys (Macaca fascularis). Lentivirus and AAV were injected into putamen of the monkey brain. One month after injection, monkeys were sacrificed, and then the presence of viral infection by expression of reporter fluorescence proteins was examined. Tissues were sectioned and stained with NeuN and GFAP antibodies for identifying neuronal cells or astrocytes, respectively, and viral reporter GFP-expressing cells were counted. We found that while lentivirus infected mostly astrocytes, AAV infected neurons at a higher rate than astrocytes. Moreover, astrocytes showed reactiveness when cells were infected by virus, likely due to virus-mediated neuroinflammation. The Sholl analysis was done to compare the hypertrophy of infected and uninfected astrocytes by virus. The lentivirus infected astrocytes showed negligible hypertrophy whereas AAV infected astrocytes showed significant changes in morphology, compared to uninfected astrocytes. In the brain of cynomolgus monkey, lentivirus shows tropism for astrocytes over neurons without much reactivity in astrocytes, whereas AAV shows tropism for neurons over glial cells with a significant reactivity in astrocytes. We conclude that AAV is best-suited for gene delivery to neurons, whereas lentivirus is the best choice for gene delivery to astrocytes in the brain of cynomolgus monkeys.